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A Critical Review of Gene Set Enrichment Analysis:

Development and Improvement

Introduction:

Genome-wide expression analysis by microarrays has been one of the most
widely used as measurement tools in biological research. Currently, the challenge of
microarray is no longer to get enough gene expression profile data, but rather lies in
analysis and interpretation of the results to understand the real biological meanings.
Researchers kept working on extracting clear and coherent hypotheses from
genome wide expression data (Goeman, 2007).

In early time, a common approach to analyze microarray data is just focusing
on a handful of genes that are at either the top or the bottom of the list of genes.
Attempting to understand each differentially expressed gene on a list of significant
genes is laborious and demanding. It has also been shown that the gene list
generated from a small number of samples can be highly variable (Pavlidis, 2003).

This kind of approach has some major limitations. A key limitation is that
single gene analysis usually misses some important effects on pathways. Modest
changes in all genes encoding members of a biological pathway may alter the
pathway dramatically and might even be more important than a relative big change
of a single gene. Also, because of the noise of microarray, modest biological
differences cannot be detected after multiple hypothesis tests. It is also possible that
a lot of genes are statistically significant but these genes don’t have any unifying
biological themes, thus it will be a big challenge to find meaningful biological
meanings (Subramaniana, 2005). Lastly, the lists of significant genes from different
groups working on the same biological system have very little overlaps (Fortunel,
2003).

In this paper, I will mainly discuss a power statistical tool gene set
enrichment analysis, focusing on its development, mechanism, strength, weakness
and improvement of this method.

2. The development of GSEA:

Due to the limitation of single gene analysis, scientists became interested in
examining the association between known biological categories or pathways and
outcomes.

Currently, there are two main types of method using gene sets to analyze
differential expression data, the over-representation and the aggregate score



approaches. In both, gene categories or gene sets are generated before the statistical
analysis. Most commonly, the gene sets are generated based on genes that are
essential for a biological process, or have the same molecular function. In many
cases, the gene sets are picked to specifically target the condition that is being
studied. However, it is also more common to use category definitions directly from
the Gene Ontology project (Lee, 2005). The Gene Ontology project sets a standard to
describe gene and gene product attributes in any organism (The Gene Ontology
Consortium 2000).

The Over-representation approach has a major limitation that it ignores all
the genes that did not make the list of candidate genes. Therefore, the results mostly
rely on the cutoff used in generating this list. In contrast, the aggregate score
approach does not have this limitation. Basically, this approach is to assign scores to
each gene set based on all the gene-specific scores for that gene set. There are
various ways to calculate these aggregate scores (Pavlidis, 2002; Mootha et al.
2003).

Gene Set enrichment analysis (GSEA) is a method that evaluates microarray
data at the level of gene sets that are defined based on prior biological knowledge.
GSEA, developed by the Lander and Mesirov group, aims to determine whether
members of a gene set tend to occur towards the top (or bottom) of the gene list.
GSEA is mainly composed of the following four steps (Tian, 2005; Subramanian,
2005):

(1) All genes are ranked by a signal-to-noise ratio.

(2) For each gene set, the distribution of gene ranks from the gene set is
compared against the distribution for the rest of the genes by using the enrichment
score (ES) based on a one-sided Kolmogorov-Smirnov statistic; The ES score
reflects the degree to which a gene set is overrepresented at the top or bottoms of
the entire list. The score is calculated in the following way. When we walk down the
ranked list, when we encounter a gene in the gene set, the score is increased in a
running sum statistical manner; on the contrary, the score decreases if we
encounter a gene that is not in the gene sets. And the ES score is the maximum
deviation from zero in the random walk, which correspond to a weighted
Kolmogorov-Smirnov-like statistic.
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Figrue 1. Calculation of Enrichment Score. (Subramaniana, 2005) S means
gene sets, N is the total number of genes in the ranked list. To calculate the ES



value, we should rank the genes to generate a list {g1,..,.gN} according to the
correlation, r(gj)=rj, of their expression profiles with C. And then we should
evaluate the fraction of genes in gene sets weighted by their correlation and
the fraction of genes not in gene sets present up to a given position i in list.
The ES is the maximum deviation from zero of P hit - P miss.

(3) Class labels are permuted to generate a null distribution of ES. Nominal P
value, reflecting the statistical significance, is estimated using an empirical
phenotype-based permutation test procedure that preserves the complex
correlation signature of gene expression data. In detail, we first permutate the
phenotype labels and recompute the ES of the gene set for the permuted data, which
generates a null distribution for the ES. The empirical, nominal P value of the
observed ES is then calculated relative to this null distribution.

(4) The last step is to adjust the significance level to account for multiple
hypothesis testing. To get a normalized ES for each gene set, we will adjust for
variation in gene set size. And then the false discovery rate (FDR) is calculated by
comparing the tails of the observed and null distributions for the NES. The FDR
reflects the probability of false positive discoveries of the gene set with certain NES.
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Figure 2. A GSEA overview (Subramanian et al. 2005) A. The expression data are
sorted by correlation with phenotype. We can rank the genes in the order of
differential expression. B. A Plot of the running sum for the gene sets in the ranked
gene list.

3. Application of GSEA:



After its invention, GSEA has been widely used to analyze and interpret
microarray as well RNA-Seq data. The original GSEA approach has also been refined
into a more sensitive and robust analytical tool. GSEA eases the interpretation of a
large scale experiment by indentifying pathways and process. Also, GSEA could be
used to refine manually curated pathways and sets by indentifying the leading edge
sets that are shared across diverse experimental data sets.

Until now, many researchers have utilized this powerful statistical approach
to analyze genome wide transcription profile data, especially in a lot of disease
study, in which they compare the expression data from normal people with patients
with certain kind of disease, such as leukemia and lung cancer. And this powerful
bioinformatics tool greatly foster new scientific discoveries.

To facilitate the use of GSEA, the Broad Institute launched the GSEA software
freely available online. This software also supports R-programming and Java
programming. The GSEA website is very user-friendly and the user guide includes
very detailed instructions about the formatting issue, requirements and other useful
tips for using GSEA and analyzing data.
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Figure 3. The GSEA software.

4. The Improvement of GSEA

Although GSEA is still currently the most population analysis for microarray
and RNA-seq analysis, there are several shortcomings of this method. First, GSEA
sometimes have very low power because, as mentioned in the user guide, the



recommended most suitable FDR threshold is 0.25. This low power might be
because of the fact that the model and null hypothesis used to motivate the test
statistic are different from those that are used for calculating p value (Yan, 2008).

Another problem of GSEA is that it loses the information on the degree of
association between each gene and the binary phenotype by only using the relative
ranking of genes rather than the absolute measurements (Dinu, 2007).

Third, as shown by Dinu et al, GSEA doesn’t meet some simple requisite
criteria for a gene-set enrichment analysis because in some cases, GSEA would
frequently indentify gene sets as statistically significant when all of its genes have
observed expressions completely uncorrelated with the phenotype (Dinu, 2007).

Another major problem of GSEA is that the enrichment score considers
genes with the phenotype separately, even when they might have similar
association with the phenotype. So GSEA is not powerful to detect a gene set with a
mix of genes with positive and negative associations with the phenotype. For
example, some feedback loops in the biological pathways involve several genes may
cause a mix of genes with positive and negative relations with the certain
phenotypes (Dinu, 2007).

Taking the drawbacks into account, people think about improving the GSEA
method. The Buhlmann group came up with an improved GSEA model in which they
adapt the GSEA method to a self-contained null hypothesis and to calculate the P
value using subject sampling (Goeman, 2007).

Original GSEA uses a competitive hypothesis rather than a self-contained null
hypothesis. The competitive hypothesis suggests the gene in the ranked gene
expression list are at most as often differentially expressed as the genes in gene sets,
while the self-contained null hypothesis states that no genes in the gene list are
differentially expressed. Statistically, the self-contained null hypothesis is more
restrictive than the competitive hypothesis (Allison, 2006). In comparison of the
two hypotheses, the self-contained one wins for several reasons. First, a test based
on the self-contained null hypothesis often has more power than a test based on the
competitive hypothesis because the restrictive nature of self-contained hypothesis.
Second, the self-contained hypothesis has a desirable property that single gene
testing and gene set testing are completely equivalent for singleton gene sets.
However, competitive hypothesis doesn’t treat a singleton gene set similarly to a
single gene. Third, self-contained hypothesis allow us to look at the set of all genes
on the chip, while this cannot be tested in a competitive way simply because there is
no complement to test the gene set against. Thus, by adapting GSEA to a self-
contained hypothesis by calculating the Kolmogorov-Smirnov statistic on the basis
of the p value, we can improve the power of GSEA method (Goeman, 2007).

Alternatively, in recent years, with the development of bioinformatics,
several new statistical analyses have been developed, such as Sub-GSE, SAM-GS and



GEGA. The Sub-GSE method was developed in 2008, which measures the
enrichment of a predefined gene set or pathway, by testing its subsets. In real
application, sub-GSE is shown to be more sensitive than GSEA in detecting gene sets
assisted with a phenotype of interest, especially in cases where only a fraction of
the genes in the set are associated with the phenotype. What's more, it is also shown
that this sub-GSE method can detect more biologically meaningful gene sets than
GSEA (Yan, 2008).

Another novel method is significance analysis of microarray to gene-set
analysis (SAM-GS). Dinu introduced this SAM-GS method (Figure 4), which takes the
same approach as SAM t-like statistic. Contrast to GSEA, SAM-GS tests a hypothesis
that the mean vectors of expressions of genes in a gene set does not differ by the
phenotype of interest. Also, SAM-GS takes into account of the absolute measures of
each gene and requires measurement only of the expression the genes in the gene
set to construct the test statistic. In their paper, they compare and contrast the
power and sensitivity of both methods by their performance on 3 DNA microarray
datasets. By comparison, we can see that SAM-GS has clear advantage than GSEA
from both statistical and biological points (Figure 5, Dinu 2007).

SAM-GS Steps
1) For each of the N genes, calculate the statistic d as in
SAM for an individual-gene analysis:

d = x1(i) - x2(i)
s(i)+sy
where the 'gene-specific scatter' s(i) is a pooled standard
deviation over the two groups of the phenotype, and s, is
a small positive constant that adjusts for the small varia-
bility encountered in microarray data [1].

2) Compute the SAMGS test statistic corresponding to set
S:

IS]
SAMGS = Y d}
i=1
3) Permute the labels of the phenotype D and repeat 1)
and 2). Repeat until all (or a large number of) permuta-
tions are considered.

4) Statistical significance for the association of S and D is
obtained by comparing the observed value of the SAMGS
statistic from 2) and its permutation distribution from 3).

Figure 4. A summary of SAM-GS method (Dinu, 2007). This figure described the key
steps of SAM-GS.



Besides the methods mentioned above, another method called generally
applicable gene set enrichment for pathway analysis (GAGE) also overcomes several
limitations of GSEA. For example, GSEA is not appropriate for studies with under 8
gene chips per state and GSEA only consider transcription regulation in one
direction. The GAGE method was developed in 2009, applying to databases with any
number of samples and was based on a parametric gene randomization procedure.
Contrary to general parametric analysis if gene set enrichment, it assumes a gene set
comes from a different distribution than the background and uses two-sample t-test
to account for the gene set specific variance and the background variance (Luo,
2009). In summary, the new GAGE method has the following advantages: 1. Better
consistency across repeated studies and experiments. 2. Better sensitivity and
specificity. 3. More biological relevance of the regulatory mechanisms.

Table 3: Results of the analyses of three datasets by GSEA and SAM-GS.

Dataset % of individual genes with FDR* < 0.25 # of gene sets with FDR < 0.01 # of gene sets with FDR < 0.25 Sensitivity/Specificity (AUCY) of
GSEA:

GSEA SAM-GS GSEA SAM-GS
Sex 0.1% 4 5 6 6 0.78/0.98 (0.94)
p53 0.3% 3 36 6 308 0.21/0.94 (0.68)
Leukemia 79.9% 0 182 5 182 0.06/NAS (NA3)

* FDR = False discovery rate estimate

TAUC = Area under the ROC curve

#Taking SAM-GS p < 0.05 as the target to be predicted

§ All gene sets in the leukemia dataset had SAM-GS p = 0.05

Table 4: The 31| gene sets for which SAM-GS and GSEA strongly disagreed (SAM-GS FDR < 0.01, GSEA FDR = 0.49) in the p53
analysis.

Gene Set GSEA SAM-GS P53 link

FDR p-value FDR p-value

ATM Pathway 0.87 021 <001 <0001 Pathway member
BAD Pathway 0.57 0.04 <001 <0.00l Apoptosis
Calcineurin Pathway 0.84 0.13 <001 <0.001 p53-induced proline oxidase mediates apoptosis via a calcineurin-
dependent pathway (12)
Cell cycle regulator 0.90 029 <001 <0001 Cell cycle
Mitochondria pathway 0.88 032 <001 <0.001 Apoptosis
P53 signaling pathway 0.51 0.01 <001 <0.001 Pathway member
Raccycd Pathway 0.83 0.56 <001 <0.001! Cell cycle
SA_TRKA _RECEPTOR 0.83 0.34 <001 <0.001! Integrated negative feedback loop between Akt and p53 (I 1)
bcl2family and reg. network 0.83 042 <001 0.001 Apoptosis
Cell cycle arrest 0.98 04% <001 0001 Cell cycle
Ceramide Pathway 0.88 0.30 <001 0.001 Apoptosis
DNA DAMAGE SIGNALLING 0.85 023 <001 0.002 Pathway member
SIG_IL4RECEPTOR IN_B_LYMPHOCYTES 093 027 =001  0.002 Cytokines; JAK/STAT signaling
Cell cycle Pathway 0.89 0.72 <001 0.003 Pathway member
G2 Pathway 038l 050 <001 0.003 Pathway member
Chemical Pathway 0.53 0.04 <001 0.005 Pathway member
Drug resistance and metabolism 0.86 0.08 <00l 0.005 Pathway member
G| Pathway 0.8l 0.37 <00l 0.005 Pathway member
Breast cancer estrogen signaling 1.00 0.85 <00l 0.006 Pathway member
Ca_nf_at_signaling 0.78 008 <001 0.007 Apoptosis (and cytokines)
Cytokine Pathway 0.53 0.05 <001  0.007 Cytokines
ST_Interleukin_4_Pathway 0.84 0.07 <001 0.007 Cytokines; JAK/STAT signaling
CR_DEATH 0.86 0.31 <0.0! 0.008 Pathway member
MAP00860: Porphyrin & chlorophyll metabolism  0.92 029 <00l 0.010 CPO regulated by p53 (13)
Ck! Pathway 0.49 0.02 <001 0.011 CdkS phosphorylates p53 (9)
Hivnef Pathway 0.95 0.48 <001 0.011 Apoptosis
Ets Pathway 0.79 0.45 <001 0.012 Ets| required for p53 mnscripdor(\r{);\ctivnion in UV-induced apoptosis
ST_Whnt_Ca2 cyclic GMP_Pathway 0.80 0.13 <00l 0.012 At least one known link between wnt and p53 (14)
Chrebp Pathway 0.84 042 <001 0.013 unknown
GPCRs_Class_A_Rhodopsin-like 0.60 0.04 <001 0.013 unknown

ST_Fas_Signaling Pathway 0.80 0.52 <001 0.013 Pathway member



Figure 5. Comparison of GSEA and SAM-GS (Dinu, 2007). Table 3 shows the number
of genes detected by both method. SAM-GS has much greater sensitivity than GSEA
does. Table 4 compares the results from SAM-GS and GSEA of the most strongly
disagreed genes. SAM is better at detecting genes and pathways while GSEA is not
that sensitive.

Summary:

Interpreting transcription profile data and discovering the biological
meaning are challenges in the field. Traditional ways that focused on single genes
missed a lot of information of the expression profiling data.

The development of the powerful analytical gene set enrichment analysis
method derives its power by focusing on gene sets and highlighting pathway and
process level. GSEA also has other adavantages, for example, it boosts the signal to
noise ratio, make it possible to detect modest changes in individual genes and it also
consider all of the genes without an arbitraty cutoff in terms of fold-change or
significance. Because of all of the advantages, GSEA is now the most popular method
for analyzing gene expression profile data.

However, we should also note that there are still several limitations of the
current GSEA method. Focusing on those drawbacks and limitations, researchers
have already developed more statistical methods in order to improve the sensitivity
and power of GSEA, such as sub-GSE, SAM-GS and GAGE. With the development of
these new methods, we can choose the most appropriate method for our specific
purpose during research and discover new things that we might missed before.
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